قسم الإحصاء

المزيد ...

حول قسم الإحصاء

تأسست كلية العلوم سنة 1957م بمدينة طرابلس بخمسة أقسام هي علم الحيوان، الرياضيات الفيزياء، الكيمياء والنبات، وكانت بعض مقررات الإحصاء في حينها تُدرس للطلبة بإشراف قسم الرياضيات حتى سنة 1978م حيث تمَّ إنشاء قسماً مستقلا للإحصاء يهتم بتدريس مقرراته بالإضافة إلى تدريسه الاحصاء للاقسام والكليات الاخرى بالجامعة.

حقائق حول قسم الإحصاء

نفتخر بما نقدمه للمجتمع والعالم

13

المنشورات العلمية

24

هيئة التدريس

130

الطلبة

54

الخريجون

البرامج الدراسية

الإجازة التخصصية (بكالوريوس)
تخصص الاحصاء

يشتمل برنامج الدراسة بالقسم على خمسة وعشرون مقرراً في الإحصاء (25) ممثلة بأربعة وثمانون وحدة(84) موزعة على ثمان فصول دراسية (8)، حيث تتنوع تصاعديا بين المقدمة في الإحصاء إلى التخصصية والتفصيلية، بالإضافة إلى تسع مقررات في الرياضيات (9) ممثلة بواحد وثلاثون وحدة (31) تعتبر داعمة للطالب لفهم...

التفاصيل

من يعمل بـقسم الإحصاء

يوجد بـقسم الإحصاء أكثر من 24 عضو هيئة تدريس

staff photo

د. مريم أحمد سالم الرماح

منشورات مختارة

بعض المنشورات التي تم نشرها في قسم الإحصاء

Comparison between the Neural Networks Forecasting With Arima Models

لهذه الدراسة هدفان مهمان وهما: أولاً: توضيح فكرة بناء الشبكات؛ العصبية المقترحة ثانياً: مقارنة هذه الطرق بالإدراك الجيد لنماذج السلاسل الزمنية (ARIMA) باستعمال المعيار MSE، وهو المعيار الأول لتدريب الشبكة العصبية والثاني لحساب آلية توقعات نماذج الشبكات العصبية. باستخدام بعض الأمثلة الخاصة اتضح أن الإجراءات حول نموذج الشبكات العصبية وجدت بأنها تقدم توقعات أفضل من نماذج السلاسل الزمنية، وأن نماذج الشبكات العصبية قد تستعمل في التنبؤ ببيانات السلاسل الزمنية بتعديل بعض الأوزان التى تعتبر معالم نماذج الشبكات العصبية والتى يمكن أن تقدر خلال عملية تدريب الشبكة، ودقة التوقعات مقدرة بالدالة المناسبة التى تستعمل في عملية تدريب الشبكة. إن مشكلة تنبؤ النماذج شائعة في التحليلات الإحصائية، وفى الغالب الطرق مستعملة للتعامل مع تنبؤ نموذج الانحدار والسلاسل الزمنية بالرغم من أن هذه الطرق قد لاتكون دقيقة في العينات الصغيرة و النتائج المتحصل عليها في هذا البحث حسبت بفصل مجموعة البيانات إلى مجموعتين جزئيتين أو أكثر، استعملنا الجزء الأول لملائمة النموذج والجزء الأخير لبناء التوقع باستخدام المعيار MSE كأداة للمقارنة بين النماذج, وكلما كانت قيمة هذا المعيار صغيرة كان النموذج أفضل. Abstract This study has two objectives. First, presenting artificial neural networks (ANN) second, comparing the proposed method with the well known ARIMA model, the accuracy of the neural network forecasts is compared with the corresponding ARIMA models by using the mean square error (MSE). By using the proposed (MSE) measures the artificial neural networks (ANN) were found deliver a better forecasts than the ARIMA model. A class of artificial neural networks (ANN) may be used in forecasting time series data. It may be used to approximate unknown expectation function of future observation given past values , thus the weights of these ANN can be viewed as parameters, which can be estimated through the network training. Then the model is used for forecasting. The accuracy of the forecasts is evaluated by suitable function. The problem of forecasting model is common in statistical analysis. One of the mostly used approach to deal with forecasting model is regression and time series. Although, approaches may not accurate in small sample. In an effort to forecast daily flow waters to the three important dams such as Ejdabia, Sirt, Benghazi, we will training to a take new tool if forecasting model which known as neural network model. This tool deal with testing data after made as partition of the original series into two sets first is called training set, were used to fit the model, while the second is called testing sets, were used to make forecasting. In this work the MSE is well known as tool for comparing between the models, further more when the MSE is less, the value of this model is a better than other models.
ساميه محمد ميره (2010)
Publisher's website

تطبيق طريقة البوتستراب لحساب فترات ثقة لإحصاءات مختلفة بأستخدام ماتلاب

أتاحت طريقة البوتستراب ( Bootstrap) التي قدمها العالم إيفرون (Efron, 1979) إجراء العديد من الأبحاث في مجال الاحصاء وغيرها من المجالات , والتي كانت لولا ذلك ستكون صعبة إن لم تكن مستحيلة. لقد أصبحت طريقة البوتستراب تأخذ جانباً مهماً في أغلب البحوث الإحصائية خاصة فيما يتعلق بالبحوث الطبية. تم في هذه الورقة تزويد الباحث بمقدمة مختصرة عن طريقة البوتستراب, كما تم تقديم شرح مبسط لكيفية استخدام الوتستراب لحساب الخطأ المعياري لمتوسط العينة, والخطأ المعياري لوسيط العينة, بالإضافة إلى كيفية استخدام طريقة الوتستراب في تكوين فترات ثقة لكل من المتوسط الحسابي والوسيط بمستوى ثقة معين باستخدام طريقة فترة بوتستراب المئوية (percentile Bootstrap Interval). لتمكين الباحث من تطبيق طريقة البوتستراب بكل سهولة ويسر فقد تم في هذه الورقة تقديم شرح وافي وواضح لكيفية تطبيق طريفة البونسراب باستخدام برنامج ماتلاب (MATLAB Software), وفي نهاية الورقة تم تقديم دالة ماتلاب, تحمل اسم Bootstrap_ci , وظيفتها الأساسية هي ايجاد فترات ثقة لمتوسط ووسيط المجتمع باستخدام طريقة البوتستراب المئوية.
سعاد محمد احمد البرقاوي, البهلول عمر شلابي(12-2021)
Publisher's website

استخدام البوتسترات في التقدير

يتعلق الاستنتاج الاحصائي بتقدير معالم المجتمع المجهولة بالاعتماد على عينات عشوائية يتم سحبها من مفردات المجتمع باستخدام طريقتين للتقدير هما تقدير النقطة وتقدير الفترة. يحتاج تقدير الفترة الى معرفة توزيع المجتمع الذي سحبت منه العينة وفي حالات كثيرة نحتاج الى افتراضات تتعلق بتوزيع المجتمع وهذه الافتراضات تستخدمها الطريقة الكلاسيكية لاستخدام نظرية النهاية المركزية وهي في الغالب تعطي تقديرات جيدة الا في بعض الحالات التي لا تصح فيها هذه الافتراضات. في مثل هذه الحالات يلجأ الاحصائيون الى طرق أخرى للتقدير تسمى الطرق اللامعلمية للتقدير التي اثبتت فعاليتها في حالة عدم صحة الافتراضات المتعلقة بمعرفتنا للتوزيع المستخدم في عملية التقدير. من الطرق التي اثبتت فعاليتها في التقدير طريقة البوتستراب (Bootstrap) التي تعتمد على إعادة المعاينة من العينة المتاحة لدينا ومعاملة هذه العينة كمجتمع نتحصل على عينات منه باستخدام اسلوب المعاينة العشوائية البسيطة بالارجاع. أوجد هذه الطريقة Bradley Efron من جامعة ستانفورد بالولايات المتحدة عام (1979) والتي تعتبر احدى الدعمات القوية لبناء طرق الاستدلال الاحصائي في التحليل الحديث للبيانات الاحصائية.وفي هذه الرسالة قمنا بإستخدام اسلوب المحكاة لتقدير معلمتين من معالم المجتمع (المتوسط ومعامل الارتباط) بإستخدام طريقة البوتستراب وقد توصلنا إلى نتائج جيدة وأكثر دقة لتقدير الفترة بإستخدام هذا الاسلوب من التي نحصل عليها من الطرق التقليدية الاخرى.
هاجر محمود مؤقت (2016)
Publisher's website