Department of Mathematics

More ...

About Department of Mathematics

Facts about Department of Mathematics

We are proud of what we offer to the world and the community

33

Publications

42

Academic Staff

185

Students

14

Graduates

Programs

Major

...

Details

Who works at the Department of Mathematics

Department of Mathematics has more than 42 academic staff members

staff photo

Mr. AML ABDULLAH ALI ALTIRBAN

امل الطربان هي احد اعضاء هيئة التدريس بقسم الرياضيات بكلية العلوم. تعمل السيدة امل الطربان بجامعة طرابلس كـمحاضر مساعد منذ 2016-02-08 ولها العديد من المنشورات العلمية في مجال تخصصها

Publications

Some of publications in Department of Mathematics

Elementary Functions in Two Real Varibles

في منتصف القرن الثامن عشر قدم العالم السويسري ليونارد أويلر ((1787-1707 الحل للمعادلة حيث وسع حقل الاعداد الحقيقية إلى حقل جديد يكون فيه للمعادلة السابقة حل وهو ماسمي فيما بعد بحقل الأعداد المركبة, حيث صاغ أويلر العدد المركب على الصورة ولكن صيغة أويلر تطرح بعض الاسئلة المنطقية عن إشارة في صورة العدد المركب قبل تعريف عملية جمع الأعداد المركبة, إلى أن جاء العالم الايرلندي- بعد حوالى قرن من الزمان- ويليام رون هاملتون ( (1865-1805عرف جبر الاعداد المركبة على أنه مع عملية الجمع المعتادة والضرب المركب وكان لهذا الجبر نتائج هامة ضمنها تعريف الدوال الاسية والمثلثية بحيث تكون تعميم لنظائرها في التحليل الحقيقي.في هذا البحث نحاول تعميم الدوال الاسية والمثلثية في متغيرين في أنظمة جبرية غير الأعداد المركبة وندرس كيف أن هذا التعريف يعتمد على تعريف عمليات الضرب (الدوال ثنائية الخطية) على كما سنثبت أن هذه الدوال لها الخواص الأسية والمثلثية المشهورة مثل : ثم نتعرض لكيفية تعريف الاشتقاق , ,, بحيث نجد مشتقاتها تتوافق مع التصورات السابقة مثل: وسوف يتبين في هذه الدراسة أن هذا التعميم ينطبق , على الدوال الاولية المركبة كحالة خاصة. Abstract In the eighteen century the Swiss mathematician Leonard Euler introduced the solution of the equation , by that he extended the field of real numbers to the new one which make the above equation possible to solve, that field is called later the field of complex numbers. Euler wrote a complex number in the form. But Euler's notation raises logical questions about the + in the notation. A quite satisfactory definition of complex numbers is due the Irish mathematician William Rowan Hamilton. According to Hamilton the algebra of complex numbers, C is defined aswith the usual operations. That algebra has many important results includes the definition of the exponential and trigonometric functions to be generalization to its analog in the real analysis. In this thes is we try to extend the definitions of the exponential and trigonometric functions in two variables to include algebras distinct from the complex numbers and we study how this definition depends on the definition of multiplication (bilinear functions) on, and we well show that the functions have the same familiar exponential and trigonometric properties as , , , And we will present the definition of differentiation such that we find derivatives compatible with previous visions such as , And we try to prove this generalization compatible with the complex elementary functions as a special case.
محمد ابو القاسم ابو عجيلة (2010)
Publisher's website

مؤثرات كازيمير وتطبيقاتها

في هذه الدراسة نقدم مؤثرات كازيمير ونعرج على أهميتها كأداة رياضية تستعمل في المجالات التطبيقية وخصوصا في الفيزياء قبل ذلك نعطي نبذة جيدة عن جبرلي والذي يفترض بأنه جبر المبادلات ثم نربط بين ذلك وبين مؤثرات كازيمير.كتطبيق واضح في هذا الاتجاه، ندرس مؤثرات الزخم الزواي وعلاقاتها التبديلية وفي الختام نعطي بعض الأمثلة على تطبيقات مؤثر كازيمير . Abstract In this study, we introduce Casimir operators and their importance as a mathematical tool to be used in applied fields, especially in physics. Before that we give a good account on Lie algebra which is supposed to be the algebra of commutators and then we relate this to Casimir operators. As an obvious application in this concern we study angular momentum operators and their commutation relations. Finally we give some examples on the applications of the Casimir operator .
نادية محمد الأكرش (2016)
Publisher's website

A Thesis Submitted in Partial Fulfillment of the Requirements for the MasterDegree of Science in Mathematics

أعداد كاتالان هي متتالية من الأعداد الطبيعية سميت نسبة إلي العالم البلجيكي يوجين شارلز كاتالان، وتدخل في حل العديد من مسائل العد مثل عدد تقسيمات مضلع محدب إلى مثلثات، عدد القمم الجبلية التي يمكن تشكيلها باستخدام n زوج من القطع المستقيمة الصاعدة والهابطة بعض المسارات الشبكة من نقطة الاصل إلي النقط ( (n,nبالإضافة إلي بعض التطبيقات في جبر المصفوفات والزمر. تهدف هذه الدراسة إلي تسليط الضوء علي بعض خواص أعداد كاتالان وتطبيقاتها في مسائل رياضية مختلفة، بالاضافة إلي دراسة لأعداد كاتالان المعممة ومثلث كاتالانالتطبيقات في التطبيقات في جبر المصفوفات والزمر Abstract Catalan numbers are a sequence of natural numbers named after the BelgianEugene Charles Catalan mathematician(1814-1894),they enumerate a lot of classes of combinatorial objects, for example the partitionings of a convex polygon, the mountain ranges that can be drawn with n upstrokes and n down strokes, some integral lattice paths and some problems in groups and matrices.The aim o this study is to highlight some properties, some applications of Catalan numbers, the generalized Catalan numbers and Catalan triangle.
اية فريد جرناز (2016)
Publisher's website