Department of Mathematics

More ...

About Department of Mathematics

Facts about Department of Mathematics

We are proud of what we offer to the world and the community

33

Publications

42

Academic Staff

185

Students

14

Graduates

Programs

Major

...

Details

Who works at the Department of Mathematics

Department of Mathematics has more than 42 academic staff members

staff photo

Mr. AML ABDULLAH ALI ALTIRBAN

امل الطربان هي احد اعضاء هيئة التدريس بقسم الرياضيات بكلية العلوم. تعمل السيدة امل الطربان بجامعة طرابلس كـمحاضر مساعد منذ 2016-02-08 ولها العديد من المنشورات العلمية في مجال تخصصها

Publications

Some of publications in Department of Mathematics

Riemannian Geometry and It’s Applications

في البحث قمنا بدراسة نوع من الهندسة اللاقليدية وتسمى هندسة ريمن أو كما تسمى بالهندسة الناقصة مع تطبيقاتها في عديد المجالات ، و أساس هذه الهندسة عدم وجود توازي بين المستقيمات في السطوح الكروية ،و تقر هذه الهندسة بتقاطع المستقيمات فقط وهو نقد للمسلمة الخامسة بالذات في هندسة اقليديس ففي الفصل الأول وضعنا تمهيدا لعدة موضوعات واجهتنا بحيث غطى إلى حد ما هذه المسلمات و المفاهيم الأخرى من خلال النظريات و النتائج التي قمنا بدراستها و التي تتعامل مع السطح الكروي وهذا يعتبر نموذج مثالي لهندسة ريمن.وفى الفصول الأخيرة قمنا بدراسة المثلث الكروي العام و حل جميع المثلثات الكروية الأخرى التي لها علاقة وطيدة بهندسة ريمن و ذلك بتطبيق قاعدتي نابير وهفرساين.واستخدمنا طرق عديدة لحل المثلث الارضى الذي يعتبر من أهم التطبيقات لهذه الهندسة و غيرها من المثلثات المشهورة. Abstract In this study, we studied one of non-Euclidean geometry “Riemannian geometry” with its applications, the basic of Riemannian geometry is the no parallel assumption. We illustrated the difference between Riemannian geometry and Euclid’s geometry by some outcomes and results; we also discussed methods of solution of any spherical triangle. Also, we studied some methods of solving general spherical triangles; we used this methods of solving the terrestrial triangle, which one of the main applications of spherical trigonometry pertains to marine, and air navigation over large areas.
سعاد محمد انجاح (2010)
Publisher's website

الحل العددى لمعادلة شرودبنجر

في هذه الرسالة نقدم مفاهيم أساسية ذات علاقة بفضاءات الضرب الداخلي وتضاءات هلبرت، ثم نقدم معادلة شرودنجر والتي تكتسب أهميتها في مجالات عدة وأهمها الفيزياء. ً ندرس المعادلة المعتمدة على الزمن وكذلك المستقلة عن الزمن ونضرب مثالا على حلها لحالة المتذبذب التواتقي البسيط والذي سيكون نواة لموضوع هذه الرسالة وهو الحل العددي لمعادلة شرودنجر. نناقش بعدئذ الحل العددي لمعادلة شرودنجر بطريقة مبتكرة والتي تسمى بطريقة الجهد المتشكلة وإتتمام الحسابات في الحالة الأرضية لمنظومة الإسناد وهي منظومة المتذبذب التوافقي البسيط، نقدم النتائج التي توصلنا إليها باستخدام الطرق العددية المعروفة وهي طريقة الفروق المنتهية وطريقة رنج-كوتا. ختام ً نعطي مناقشة مقتضبة حول أعمال مستقبلية يمكن القيام بها وتتضمن إجراء حسابات مماثلة للحالات المثارة للمتذبذب التوافقي البسيط وكذلك إجراء الحسابات باستخدام نظرية التشويش من الرتبة الأولى والمقارنة بين الحسابات الناتجة من طريقة الجهد المتشكلة وطريقة التشويش.
خديجة عبد العاطي بن موسي (2014)
Publisher's website

Symmetry Methods for Solving Ordinary Differential Equations

في هذا البحث نقدم بعض طرق التناظر مع تطبيقاتها لإيجاد الحل لبعض المعادلات التفاضلية العادية. هذه الطرق تعرف ب: تناظر ليّ (Lie) وتناظر سندمان (Sundman)كلتا الطريقتين تزودنا بأداة قوية لتوليد التحويلات التي يمكن أن تستخدم لتحويل المعادلة التفاضلية المعطاة إلى معادلة أبسط مع المحافظة على الثبات (اللاتغير) للمعادلة الأصلية. في الباب الأول والثاني نقدم بعض التعريفات والمفاهيم الأساسية التي سنستخدمها في الفصول القادمة من البحث. أما في الباب الثالث سوف نقدم طريقة تناظر ليّ مع بعض المفاهيم والنظريات الأساسية لتحويلات ليّ ثم نقدم تطبيقات مجموعات التحويلات النقطية ل ليّ لإيجاد الحل العام أو الخاص للمعادلات التفاضلية العادية.وأخيراً في الباب الرابع سوف نستعرض طريقة تناظر سندمان للمعادلات التفاضلية العادية اللاخطية وسنرى أن تناظر سندمان يستخدم بنجاح لتحويل التكاملات الأولية (First Integrals) إلى تكاملات أولية جديدة والتي يمكن أن تقودنا إلى الحل العام للمعادلة المناظرة وكذلك لتحويل الحل الخاص للمعادلة إلى الحل العام لها. Abstract In this thesis we introduce some symmetry methods with it’s applications to find solutions for some ordinary differential equations.These methods are known as Lie and Sundman Symmetries, both methods provide a powerful tool for the generation of transformations that can be used to transform the given differential equation to a simpler equation while preserving the invariance of the original equation. In chapter One and Two, we introduce some definitions and basic concepts which will be needed in the following chapters of the thesis. In chapter Three, we introduce method of Lie symmetry with some basic concept and theorem for Lie transformations, then we give applications of Lie groups of transformation to obtain particular or general solutions for ordinary differential equations. Finally, in chapter Four, we investigate the Sundman symmetries of nonlinear ordinary differential equations, and we will show that these transformations and symmetries can successfully be applied to transform first integrals to the new first integrals which may lead to the general solution of the corresponding equation, also map special solutions to general solutions.
نيفين زكي محمد أبو قورة (2009)
Publisher's website