قسم الهندسة الكيميائية

المزيد ...

حول قسم الهندسة الكيميائية

الهندسة الكيميائية هي إحدى فروع الهندسة الحديثة التي تهتم بالصناعات الكيميائية والبتروكيميائية وتصنيع النفط والغاز، ولقد تم افتتاح هذا القسم في السنة الجامعية 1968-1969م، كأحد أقسام كلية الهندسة، وقد تم التخطيط ووضع برنامج أكاديمي يهدف إلى إعداد المهندسين المتخصصين القادرين على إدارة وتطوير مصانع وآلات العمليات الكيميائية وكذلك تشغيل المرافق الصناعية الكيميائية والخدمية المختلفة. ويتولى تسيير البرنامج العلمي والبحثي بالقسم أكثر من 30 عضو هيئة تدريس في تخصصات مختلفة.

حقائق حول قسم الهندسة الكيميائية

نفتخر بما نقدمه للمجتمع والعالم

15

المنشورات العلمية

23

هيئة التدريس

336

الطلبة

47

الخريجون

من يعمل بـقسم الهندسة الكيميائية

يوجد بـقسم الهندسة الكيميائية أكثر من 23 عضو هيئة تدريس

staff photo

د. مواهب محمد الزروق الدردار

د.مواهب محمد الزروق الدردار هي احد اعضاء هيئة التدريس بقسم الهندسة الكيميائية بكلية الهندسة. تعمل الدكتورة مواهب الدردار بجامعة طرابلس كـاستاذ مشارك منذ 15-01-2020 ولها العديد من المنشورات العلمية في مجال تخصصها ، رئيس قسم الهندسة الكيميائية منذ فبراير 2022م

منشورات مختارة

بعض المنشورات التي تم نشرها في قسم الهندسة الكيميائية

Assessment of Cement Kiln Dust Utilization In Soil Amendment and Adsorption Process

Abstract Cement kiln dust is a major by product in cement manufacture. Methods of disposal, handling, treatment and reuses are a major factors in optimization of a certain cement plant. This thesis concentrates on the uses of cement kiln dust of souk Al Kamees cement plant as Soil amendment and as an adsorpent of Fe, Zn and lead results from sand. The major objectives of these treatments are environmental rather than economical to reduce the landfill disposal of CKD which is major problem in cement industry. CKD is used in agricultural soil amendment.CKD in Souk Alkamees consists primarily of calcium carbonate and silence dioxide, the alkaline by pass process contains highest amount of calcium oxide and lowest loss on ignation [LOI] which become a beneficial for CKD use as a soil amendment to the sand for many especial agricultural products such as potatoes, …etc. This thesis concentrates on the uses of CKD as an adsorbent to remove heavy metals such as Fe, Zn, and Pb from soil. Adsorption column is used to perform the work. Experimental setup discussed in the thesis is used using cement kiln dust as an adsorbent for removal of heavy metals from soil. The major result is to simulate the physical behavior of the process using conventional isotherms available in literature, Langmuir, Freandlish and Drachsal isotherm models have been found to simulate the data with good agreement with experimental work. Characterization of the CKD is made after dehydration process at 150C for 24 hrs. X ray fluorescent equipment is used and the results are reported in the thesis.
محمد محمود الشاهري (2015)
Publisher's website

The Kinetic of Matrix Acidizing in Reservoir Rocks

Abstract Matrix acidizing is a stimulation method commonly used to remove near wellbore damage and restore original formation permeability. It involves the injection of acid into formations at pressures below the fracture pressure. Acid flows down the well into the reservoir, and then reacts with the rock such that any near wellbore permeability damage created by meling or completion fluids can be removed and apparent permeability increased. A matrix acidizing treatment can be' applied to either a sandstone or a carbonate reservoir. Different acids are used because different minerals are involved in these treatments. Hydrochloric acid (HCI) is usually used in carbonate reservoirs to react with carbonates. Hydrofluoric acid (HF) or mixture of Hydrofluoric acid (HF) with Hydrochloric acid (HCI) is commonly used in sandstone porous media to react with silicates and feldspars in the rock. Since the mechanisms of acid reactions with these two types of rock are different, results of the treatments are different as well. In sandstone matrix acidizing, permeability increase behind the acid front is relatively homogeneous. The flow and reaction of acid in carbonate porous media results in the formation of highly conductive flow channels, commonly referred to as wormholes. In the present work we have studies the first study to test the optimal acid flux theory presented by Wang (1) with several independent sets of experimental data. The model was comparing with field data. The second study we use model presented by McCune and Fogler.(2) This previous studies on mathematical modeling of the chemical reactions between sandstone and mud acid. This model is lumped-parameter model. The lumped-parameter model simplifies the chemistry of the dissolution of sandstone minerals with mud acid. The models are compared with the experimental data at different flow rates.
عبد ربه ادريس بوسدرة (2010)
Publisher's website

Assessment Study of Energy Consumption in Ras Lanuf Refinery by pinch Analysis

Abstract Against the background due to the energy crisis in the late 1970’s, the pinch analysis has emerged as a powerful tool for the integrated design of process heat networks which include heat exchangers, distillation columns, furnaces, etc..The key strategy of this methodology is to set energy targets prior to design based on basic thermodynamic principles.The subject of this thesis in to apply this analysis to one of the Libyan Refineries, namely Ras Lanuf Refinery, to assess energy utilization of such big energy – consuming plants and to explore the potential of energy as well as capital costs savings based on the finding of applying this analysis. Based on actual operating data collected from the plant and application of the procedure of the pinch analysis to this real case study where a minimum temperature difference approach in the Ras Lanuf refinery heat exchangers design of 10 (ΔT min =10 ) the following results were obtained. Actual rate of energy consumption of the base case design of the refinery is 9MW which is provided by burning fuel oil in the furnace, while the minimum target predicted by the pinch analysis should be 8MW. This amounts to just over 11% energy savings which equivalent to $462,000 per year reduction in the operating cost of the refinery
هويدة الهادي الحبيشي (2011)
Publisher's website